AI Paper Review/NLP

PreliminariesPEFT (Parameter Efficient Fine-Tuning)성능은 그대로 유지하고, 파라미터 수를 줄여서 training time이나 memory efficiency 측면에서 장점을 갖게 됨Adapter, Prompt Tuning, LoRA 등의 방법론 제기.Adapter(추후 추가예정)Introduction최근 175B의 Parameter를 가진 GPT-3 모델을 fine tuning하는 것이 expensive하다는 문제가 제기되면서, 이를 경량화하려는 노력에 대한 시도가 많이 진행되고 있다.Low-Rank Adaptation (LoRA) 기법은, 기존에 pre-trained model을 freeze시키고 rank decomposition matrix를 기반으로 학습시키..
세계적으로 IT분야에 대한 관심이 뜨겁습니다. 인공지능(AI)의 등장은 많은 사람들에게 더 나은 편의를 제공할 수 있다는 기대감을 제공했고, 이에 힘입어 발전 속도가 가속화되고 있스빈다. 이러한 인공지능(AI)은 그 범위가 아주 광범위한데, 우선적으로 단순하게 두 가지, 머신 러닝(Machine Learning)과 딥 러닝(Deep Learning)으로 나눠볼 수 있습니다. 머신러닝이란? 머신러닝(ML)은 데이터를 기반으로 학습 또는 성능 향상을 지원하는 시스템을 구축하는 데 초점을 맞추는 인공 지능(AI)의 하위 집합입니다. 인공지능은 인간 지능을 모방하는 시스템 또는 머신을 나타내는 광범위한 용어입니다. 머신러닝과 AI에 대해 함께 논의되는 경우가 많고 서로 바꿔서 사용되기도 하지만 동일한 것을 의미..
지민몬
'AI Paper Review/NLP' 카테고리의 글 목록